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Abstract
A novel amplitude-phase method for analyzing radial Dirac solutions is
presented. This approach addresses the original coupled radial Dirac equations
without first transforming them to decoupled second-order differential
equations. As a reference test, the method is applied to the scattering problem
of a Dirac particle (electron) in a long-range Coulomb 4-vector potential with
zero space components. Numerical results for the partial-wave S-matrix are
compared with those from an exact analytic S-matrix formula.

PACS numbers: 03.65.Nk, 03.65.Pm, 03.65.Sq.

Amplitude-phase decompositions of radial Schrödinger solutions have been introduced and
discussed in several papers related to scattering states and bound states in atomic physics [1].
This classical, and well-established, approach is also applicable to the radial Dirac equations,
once these equations have been transformed to decoupled second-order differential equations.
However, as will be illustrated in this short presentation, it is also possible to construct an
amplitude-phase decomposition of a similar ‘classical’ form that is directly applicable to the
coupled first-order differential equations without any elaborate transformations (cf [2]).

The crucial idea with an amplitude-phase method is to find an ‘almost constant’ amplitude
of a wave that is defined by some (typically) nonlinear, ordinary differential equation. This
amplitude is then known to determine the phase of the wave by an auxiliary equation [1].
Nonlinear equations are known to possess differing types of solutions, depending on initial (or
boundary) conditions. Hence, if the problem allows a single ‘stationary’ boundary condition,
then a single well-behaved amplitude can be found that provides the physical solution. The
computational advantages with a single amplitude approach are obvious, but sometimes high
precision calculations require the use of several amplitude functions [3].

When the Dirac solutions for a particle of mass m and energy E have been factorized into
an angular part and a radial part (see [4] or [5]), the first-order differential equations of the
radial components are given by

dF

dr
= −κ

r
F +

E − V (r) + mc2

h̄c
G,

dG

dr
= −E − V (r) − mc2

h̄c
F +

κ

r
G. (1)
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Here c is the speed of light, h̄ = h/(2π) with Planck’s constant h and V (r) being the central
(time-like) 4-vector potential function of the radial coordinate r. According to Berestetskii
et al [4], the non-zero integer parameter κ appearing in (1) is given by κ = −(� + 1) � −1
for the angular momentum quantum numbers � = 0, 1, 2 . . . and κ = � � 1 for � = 1, 2 . . ..

For scattering energies (|E| > mc2) the so-called ‘large component’ of the regular Dirac
solution, here represented by F, satisfies

F ∼ sin[kr + η ln(2kr) − π�/2 + δ�,κ ], r → +∞, (2)

which completely defines the two sequences of partial wave phase shifts δ�,κ . The asymptotic
behavior (2) contains a Coulomb (Sommerfeld) parameter

η = EZα

kh̄c
, (3)

where Z � 0 is the (screened) nuclear charge number and the fine structure constant α is
expressed in terms of the elementary charge unit e as

α = e2

h̄c
, (4)

and k is the asymptotic wave number:

k =
(

E2 − m2c4

h̄2c2

)1/2

. (5)

The next step is to introduce a suitable amplitude-phase method for solving equation (1).
Historically, an amplitude-phase method for second-order Schrödinger-type (or parametric
oscillator) differential equations is based on an ansatz for solutions in their oscillatory
(classically accessible) region of the radial variable. If there is only one relevant oscillatory
region, then a single ansatz will automatically reproduce the solution also in the neighboring
non-oscillatory region(s) (there are two such regions for a single-well bound-state problem).
Since the radial Dirac equations (1) can be transformed to Schrödinger-type differential
equations, both coupled (treated in [2]) and uncoupled ones (treated in [1] and recently in [3]),
the relevant ansatz for equation (1) is assumed to be of the same form. Hence, each (single
or multi-component) solution has formally an ansatz u exp(iφ), where u is the amplitude and
φ is the phase. So far multi-component solutions have been defined with a common phase.
The amplitude component solutions may still have different phases by allowing them to be
complex valued. One may thus try the ansatz(

F

G

)
→

(
uF

uG

)
exp(iφ), (6)

and consider (6) and its complex conjugate (or alternatively the real and imaginary parts
of (6)) as two fundamental solutions of the real-valued Dirac equation (1).

It should be clear that an amplitude-phase method, even if it is an exact method as such,
cannot claim that there exists a unique amplitude and a unique phase for an oscillatory solution.
For example, one could as well, instead of (6), introduce an ansatz like(

F

G

)
→

[
(E + mc2 − V (r))1/2uF

(E − mc2 − V (r))1/2uG

]
exp(iφ),

where in this case uF , uG and φ are different functions compared with those in (6). The
criteria for the amplitude-phase method are rather that the amplitude should be a sufficiently
constant function and that the phase should vary sufficiently linear with the radial variable.
Apart from the possibility of modifying the ansatz, the amplitude-phase method has other
ways to ‘optimize’ the behaviors of the amplitude and the phase, as will be explained next.
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For a single-component Schrödinger equation one introduces in the amplitude-phase
approach two functions, the single amplitude u and the single phase φ, instead of the original
solution. Thus, one has the freedom to define an auxiliary condition that actually defines the
(non-unique) phase as a function of the amplitude. Historically, the choice dφ/dr = u−2 not
only transformed the single-component Schrödinger equation to the nonlinear so-called Milne
equation [1] for u, but also made the Wronskian of the two fundamental solutions, in this
case u exp(iφ) and u exp(−iφ), constant; see [3]. Furthermore, for multi-component solutions
of the Schrödinger type the phase has been defined in the same way, i.e. dφ/dr = u−2, but
now u is generalized to be the (complex or real) norm of the multi-component amplitude
[2]. Once this relation between the phase and amplitude has been introduced and the ansatz is
substituted into the original differential equations, one obtains nonlinear differential equations
for the amplitude components. Hence, the resulting solutions of amplitude components will
depend on initial conditions. It is at this stage that one is interested in finding a point r = r0,
where the amplitude components are (almost) constants and where the very accurate numerical
integration can be initialized.

When the two-component ansatz (6) is substituted into the Dirac equations (1), one obtains

duF

dr
=

(
−iφ′ − κ

r

)
uF +

E − V (r) + mc2

h̄c
uG,

duG

dr
= −E − V (r) − mc2

h̄c
uF +

(
−iφ′ +

κ

r

)
uG.

(7)

Together with the auxiliary condition

φ′ = u−2, with u2 = |uF |2 + |uG|2, (8)

equations (7) constitute the nonlinear differential equations for the complex amplitude
components. The four independent quantities to be calculated are the real and imaginary
parts of uF and uG. With them and relation (8), the ansatz (6) and its complex conjugate
define a set of fundamental solutions to the original linear differential equation (1) with real
parameters.

The integration of (7) for scattering problems is initiated formally at r = +∞, where
the r-dependence of the coefficients in the original Dirac equation (1) vanishes. By requiring
duF,G/dr = 0 in (7) with r = +∞, one obtains an eigenvalue problem that results in

φ′(+∞) = k, (9)

with k defined by (5), and[
uF (+∞)

uG(+∞)

]
= N

[
(E + mc2)1/2

i(E − mc2)1/2

]
. (10)

The normalization factor N is not determined by the solution of the eigenvalue problem itself,
but can be determined from the auxiliary relation (8). One thus finds N = (2Ek)−1/2 at
r = +∞. In practice one initiates the integration at a finite value r = r0, where r0 is chosen
so that |V (r0)| and/or |κ/r0| are sufficiently small compared to |E − mc2|. It is also possible
to require duF,G/dr = 0 in (7) with r = r0 and solve a modified eigenvalue problem as that
mentioned above with r = +∞. The solution of the modified eigenvalue problem can be seen
as a first-order adiabatic solution of the two-component amplitude. Note, however, that the
amplitude-phase solution (6) and its complex conjugate still provide a set of exact fundamental
solutions.

To proceed, let the complex amplitude component uF (r) be written as

uF (r) = |uF (r)| ei arg uF (r), (11)
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Table 1. Selected values of the S-matrix for an electron scattered by a Coulombic 4-vector
potential with zero space-like components and with Z = 10 (neon nucleus). (AP) denotes the
amplitude-phase results and (Exact) denotes the result from the closed-form analytic S-matrix
formula (16).

� κ S�,κ (AP) −arg uF (0) S�,κ (Exact)

0 −1 0.826 3891 + 0.563 099i 0.339 0.826 390 5090 + 0.563 097 4390i
1 1 0.807 0921 − 0.590 426i 0.088 0.807 097 7945 − 0.590 417 7756i
1 −2 0.800 5618 − 0.599 250i 0.130 0.800 556 7332 − 0.599 256 9715i

10 10 −0.980 5816 + 0.196 112i 0.062 −0.980 581 4007 + 0.196 112 5073i
10 −11 −0.980 4249 + 0.196 894i 0.072 −0.980 424 6607 + 0.196 894 6002i
20 20 −0.411 4148 + 0.911 4482i 0.056 −0.411 413 9115 + 0.911 448 6237i
20 −21 −0.411 0614 + 0.911 6077i 0.065 −0.411 060 5650 + 0.911 608 0368i
30 30 0.139 6249 + 0.990 2045i 0.052 0.139 624 5888 + 0.990 204 5116i
30 −31 0.139 8757 + 0.990 1691i 0.062 0.139 878 0096 + 0.990 168 7446i
40 40 0.516 4830 + 0.856 2975i 0.050 0.516 483 2909 + 0.085 629 7268i
40 −41 0.516 6460 + 0.856 1992i 0.059 0.516 646 8108 + 0.856 198 6181i
50 50 0.755 2815 + 0.655 4005i 0.048 0.755 281 6466 + 0.655 400 3617i
50 −51 0.755 3813 + 0.655 2855i 0.057 0.755 381 4669 + 0.655 285 3112i

100 100 0.965 7478 − 0.259 4827i 0.042 0.965 748 7572 − 0.259 478 2650i
100 −101 0.965 7294 − 0.259 5510i 0.052 0.965729 3072 − 0.259 551 3547i

so that one can write the regular large Dirac component as

F(r) = A|uF (r)| sin[φ(r) + arg uF (r) + β] (12)

with A and β being constants and arg uF (+∞) = 0 from the boundary condition (10). The
constant A is unimportant here, but β has to make sure that the solution vanishes at the
origin; see [6] for a general discussion on physically acceptable potentials that allow a unique
vanishing solution at r = 0. The phase φ(r) in (12) is defined from (8) apart from a constant
of integration that can be chosen so that the phase vanishes as r → 0. The constant β in (12)
is then uniquely determined from the requirement that the sine function vanishes. Hence, one
has

φ(0) = 0 and β = −arg uF (0). (13)

The phase shift defined in (2) is thus obtained by the formula

δ�,κ = lim
r→+∞[φ(r) − kr − η ln(2kr)] −arg uF (0) + π�/2. (14)

A numerical test that allows comparisons with exact analytic results is provided by the
Coulomb potential:

V (r) = −Ze2

r
. (15)

Here, Z is the nuclear charge number and e > 0 is the Coulomb charge unit.
The amplitude phase computations are performed using MatLab’s integration routine

‘ode23’ with a tolerance of 10−7. Atomic units (m = e = h̄ = 1) with c = 137 are used. The
scattering energy is chosen as E = mc2 + 102 au. The integrations are initiated at r = r0 =
5×103 and terminated at r = 10−10. A comparison is made with results from the closed-form
Coulomb S-matrix given by (see [4])

S�,κ ≡ e2iδκ,� = κ − iηmc2/E

	 − iη


(	 + 1 − iη)


(	 + 1 + iη)
eiπ(�−	), (16)
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where

	 = [κ2 − (Zα)2]1/2 > 0. (17)

Table 1 shows that the amplitude-phase equations can be effectively integrated using
‘MatLab ode23’ with minor deviations in the numerical accuracy for different values of the
system parameters. The values of the local phase −arg uF (0) appear to be rather sensitive
to the initial (approximate) values of uF (r0), but this sensitivity does not influence the final
amplitude-phase result. Therefore, it is not relevant to show more than the first few decimals
of − arg uF (0) in the table.

This paper presents a new amplitude-phase approach for analyzing the radial Dirac
equations. A more detailed account of the method and comparisons with the ‘standard’
amplitude-phase method (see [1]) and other methods will be presented elsewhere.
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