A new amplitude-phase method for analyzing scattering solutions of the radial Dirac equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41115304
(http://iopscience.iop.org/1751-8121/41/11/115304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:37

Please note that terms and conditions apply.

A new amplitude-phase method for analyzing scattering solutions of the radial Dirac equation

Karl-Erik Thylwe
KTH-Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Received 21 November 2007, in final form 14 January 2008
Published 4 March 2008
Online at stacks.iop.org/JPhysA/41/115304

Abstract

A novel amplitude-phase method for analyzing radial Dirac solutions is presented. This approach addresses the original coupled radial Dirac equations without first transforming them to decoupled second-order differential equations. As a reference test, the method is applied to the scattering problem of a Dirac particle (electron) in a long-range Coulomb 4-vector potential with zero space components. Numerical results for the partial-wave S-matrix are compared with those from an exact analytic S-matrix formula.

PACS numbers: 03.65.Nk, 03.65.Pm, 03.65.Sq.

Amplitude-phase decompositions of radial Schrödinger solutions have been introduced and discussed in several papers related to scattering states and bound states in atomic physics [1]. This classical, and well-established, approach is also applicable to the radial Dirac equations, once these equations have been transformed to decoupled second-order differential equations. However, as will be illustrated in this short presentation, it is also possible to construct an amplitude-phase decomposition of a similar 'classical' form that is directly applicable to the coupled first-order differential equations without any elaborate transformations (cf [2]).

The crucial idea with an amplitude-phase method is to find an 'almost constant' amplitude of a wave that is defined by some (typically) nonlinear, ordinary differential equation. This amplitude is then known to determine the phase of the wave by an auxiliary equation [1]. Nonlinear equations are known to possess differing types of solutions, depending on initial (or boundary) conditions. Hence, if the problem allows a single 'stationary' boundary condition, then a single well-behaved amplitude can be found that provides the physical solution. The computational advantages with a single amplitude approach are obvious, but sometimes high precision calculations require the use of several amplitude functions [3].

When the Dirac solutions for a particle of mass m and energy E have been factorized into an angular part and a radial part (see [4] or [5]), the first-order differential equations of the radial components are given by
$\frac{\mathrm{d} F}{\mathrm{~d} r}=-\frac{\kappa}{r} F+\frac{E-V(r)+m c^{2}}{\hbar c} G, \quad \frac{\mathrm{~d} G}{\mathrm{~d} r}=-\frac{E-V(r)-m c^{2}}{\hbar c} F+\frac{\kappa}{r} G$.
1751-8113/08/115304+05\$30.00 © 2008 IOP Publishing Ltd Printed in the UK

Here c is the speed of light, $\hbar=h /(2 \pi)$ with Planck's constant h and $V(r)$ being the central (time-like) 4-vector potential function of the radial coordinate r. According to Berestetskii et al [4], the non-zero integer parameter κ appearing in (1) is given by $\kappa=-(\ell+1) \leqslant-1$ for the angular momentum quantum numbers $\ell=0,1,2 \ldots$ and $\kappa=\ell \geqslant 1$ for $\ell=1,2 \ldots$.

For scattering energies $\left(|E|>m c^{2}\right)$ the so-called 'large component' of the regular Dirac solution, here represented by F, satisfies

$$
\begin{equation*}
F \sim \sin \left[k r+\eta \ln (2 k r)-\pi \ell / 2+\delta_{\ell, k}\right], \quad r \rightarrow+\infty, \tag{2}
\end{equation*}
$$

which completely defines the two sequences of partial wave phase shifts $\delta_{\ell, \kappa}$. The asymptotic behavior (2) contains a Coulomb (Sommerfeld) parameter

$$
\begin{equation*}
\eta=\frac{E Z \alpha}{k \hbar c} \tag{3}
\end{equation*}
$$

where $Z \geqslant 0$ is the (screened) nuclear charge number and the fine structure constant α is expressed in terms of the elementary charge unit e as

$$
\begin{equation*}
\alpha=\frac{e^{2}}{\hbar c}, \tag{4}
\end{equation*}
$$

and k is the asymptotic wave number:

$$
\begin{equation*}
k=\left(\frac{E^{2}-m^{2} c^{4}}{\hbar^{2} c^{2}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

The next step is to introduce a suitable amplitude-phase method for solving equation (1). Historically, an amplitude-phase method for second-order Schrödinger-type (or parametric oscillator) differential equations is based on an ansatz for solutions in their oscillatory (classically accessible) region of the radial variable. If there is only one relevant oscillatory region, then a single ansatz will automatically reproduce the solution also in the neighboring non-oscillatory region(s) (there are two such regions for a single-well bound-state problem). Since the radial Dirac equations (1) can be transformed to Schrödinger-type differential equations, both coupled (treated in [2]) and uncoupled ones (treated in [1] and recently in [3]), the relevant ansatz for equation (1) is assumed to be of the same form. Hence, each (single or multi-component) solution has formally an ansatz $u \exp (\mathrm{i} \phi)$, where u is the amplitude and ϕ is the phase. So far multi-component solutions have been defined with a common phase. The amplitude component solutions may still have different phases by allowing them to be complex valued. One may thus try the ansatz

$$
\begin{equation*}
\binom{F}{G} \rightarrow\binom{u_{F}}{u_{G}} \exp (\mathrm{i} \phi), \tag{6}
\end{equation*}
$$

and consider (6) and its complex conjugate (or alternatively the real and imaginary parts of (6)) as two fundamental solutions of the real-valued Dirac equation (1).

It should be clear that an amplitude-phase method, even if it is an exact method as such, cannot claim that there exists a unique amplitude and a unique phase for an oscillatory solution. For example, one could as well, instead of (6), introduce an ansatz like

$$
\binom{F}{G} \rightarrow\left[\begin{array}{c}
\left(E+m c^{2}-V(r)\right)^{1 / 2} u_{F} \\
\left(E-m c^{2}-V(r)\right)^{1 / 2} u_{G}
\end{array}\right] \exp (\mathrm{i} \phi),
$$

where in this case u_{F}, u_{G} and ϕ are different functions compared with those in (6). The criteria for the amplitude-phase method are rather that the amplitude should be a sufficiently constant function and that the phase should vary sufficiently linear with the radial variable. Apart from the possibility of modifying the ansatz, the amplitude-phase method has other ways to 'optimize' the behaviors of the amplitude and the phase, as will be explained next.

For a single-component Schrödinger equation one introduces in the amplitude-phase approach two functions, the single amplitude u and the single phase ϕ, instead of the original solution. Thus, one has the freedom to define an auxiliary condition that actually defines the (non-unique) phase as a function of the amplitude. Historically, the choice $\mathrm{d} \phi / \mathrm{d} r=u^{-2}$ not only transformed the single-component Schrödinger equation to the nonlinear so-called Milne equation [1] for u, but also made the Wronskian of the two fundamental solutions, in this case $u \exp (\mathrm{i} \phi)$ and $u \exp (-\mathrm{i} \phi)$, constant; see [3]. Furthermore, for multi-component solutions of the Schrödinger type the phase has been defined in the same way, i.e. $\mathrm{d} \phi / \mathrm{d} r=u^{-2}$, but now u is generalized to be the (complex or real) norm of the multi-component amplitude [2]. Once this relation between the phase and amplitude has been introduced and the ansatz is substituted into the original differential equations, one obtains nonlinear differential equations for the amplitude components. Hence, the resulting solutions of amplitude components will depend on initial conditions. It is at this stage that one is interested in finding a point $r=r_{0}$, where the amplitude components are (almost) constants and where the very accurate numerical integration can be initialized.

When the two-component ansatz (6) is substituted into the Dirac equations (1), one obtains

$$
\begin{align*}
\frac{\mathrm{d} u_{F}}{\mathrm{~d} r} & =\left(-\mathrm{i} \phi^{\prime}-\frac{\kappa}{r}\right) u_{F}+\frac{E-V(r)+m c^{2}}{\hbar c} u_{G} \tag{7}\\
\frac{\mathrm{~d} u_{G}}{\mathrm{~d} r} & =-\frac{E-V(r)-m c^{2}}{\hbar c} u_{F}+\left(-\mathrm{i} \phi^{\prime}+\frac{\kappa}{r}\right) u_{G}
\end{align*}
$$

Together with the auxiliary condition

$$
\begin{equation*}
\phi^{\prime}=u^{-2}, \quad \text { with } \quad u^{2}=\left|u_{F}\right|^{2}+\left|u_{G}\right|^{2}, \tag{8}
\end{equation*}
$$

equations (7) constitute the nonlinear differential equations for the complex amplitude components. The four independent quantities to be calculated are the real and imaginary parts of u_{F} and u_{G}. With them and relation (8), the ansatz (6) and its complex conjugate define a set of fundamental solutions to the original linear differential equation (1) with real parameters.

The integration of (7) for scattering problems is initiated formally at $r=+\infty$, where the r-dependence of the coefficients in the original Dirac equation (1) vanishes. By requiring $\mathrm{d} u_{F, G} / \mathrm{d} r=0$ in (7) with $r=+\infty$, one obtains an eigenvalue problem that results in

$$
\begin{equation*}
\phi^{\prime}(+\infty)=k, \tag{9}
\end{equation*}
$$

with k defined by (5), and

$$
\left[\begin{array}{l}
u_{F}(+\infty) \tag{10}\\
u_{G}(+\infty)
\end{array}\right]=N\left[\begin{array}{c}
\left(E+m c^{2}\right)^{1 / 2} \\
\mathrm{i}\left(E-m c^{2}\right)^{1 / 2}
\end{array}\right] .
$$

The normalization factor N is not determined by the solution of the eigenvalue problem itself, but can be determined from the auxiliary relation (8). One thus finds $N=(2 E k)^{-1 / 2}$ at $r=+\infty$. In practice one initiates the integration at a finite value $r=r_{0}$, where r_{0} is chosen so that $\left|V\left(r_{0}\right)\right|$ and $/$ or $\left|\kappa / r_{0}\right|$ are sufficiently small compared to $\left|E-m c^{2}\right|$. It is also possible to require $\mathrm{d} u_{F, G} / \mathrm{d} r=0$ in (7) with $r=r_{0}$ and solve a modified eigenvalue problem as that mentioned above with $r=+\infty$. The solution of the modified eigenvalue problem can be seen as a first-order adiabatic solution of the two-component amplitude. Note, however, that the amplitude-phase solution (6) and its complex conjugate still provide a set of exact fundamental solutions.

To proceed, let the complex amplitude component $u_{F}(r)$ be written as

$$
\begin{equation*}
u_{F}(r)=\left|u_{F}(r)\right| \mathrm{e}^{\mathrm{i} \arg u_{F}(r)} \tag{11}
\end{equation*}
$$

Table 1. Selected values of the S-matrix for an electron scattered by a Coulombic 4 -vector potential with zero space-like components and with $Z=10$ (neon nucleus). (AP) denotes the amplitude-phase results and (Exact) denotes the result from the closed-form analytic S-matrix formula (16).

ℓ	κ	$S_{\ell, \kappa}(\mathrm{AP})$	$-\arg u_{F}(0)$	$\mathrm{S}_{\ell, \kappa}($ Exact $)$
0	-1	$0.8263891+0.563099 \mathrm{i}$	0.339	$0.8263905090+0.5630974390 \mathrm{i}$
1	1	$0.8070921-0.590426 \mathrm{i}$	0.088	$0.8070977945-0.5904177756 \mathrm{i}$
1	-2	$0.8005618-0.599250 \mathrm{i}$	0.130	$0.8005567332-0.5992569715 \mathrm{i}$
10	10	$-0.9805816+0.196112 \mathrm{i}$	0.062	$-0.9805814007+0.1961125073 \mathrm{i}$
10	-11	$-0.9804249+0.196894 \mathrm{i}$	0.072	$-0.9804246607+0.1968946002 \mathrm{i}$
20	20	$-0.4114148+0.9114482 \mathrm{i}$	0.056	$-0.4114139115+0.9114486237 \mathrm{i}$
20	-21	$-0.4110614+0.9116077 \mathrm{i}$	0.065	$-0.4110605650+0.9116080368 \mathrm{i}$
30	30	$0.1396249+0.9902045 \mathrm{i}$	0.052	$0.1396245888+0.9902045116 \mathrm{i}$
30	-31	$0.1398757+0.9901691 \mathrm{i}$	0.062	$0.1398780096+0.9901687446 \mathrm{i}$
40	40	$0.5164830+0.8562975 \mathrm{i}$	0.050	$0.5164832909+0.0856297268 \mathrm{i}$
40	-41	$0.5166460+0.8561992 \mathrm{i}$	0.059	$0.5166468108+0.8561986181 \mathrm{i}$
50	50	$0.7552815+0.6554005 \mathrm{i}$	0.048	$0.7552816466+0.6554003617 \mathrm{i}$
50	-51	$0.7553813+0.6552855 \mathrm{i}$	0.057	$0.7553814669+0.6552853112 \mathrm{i}$
100	100	$0.9657478-0.2594827 \mathrm{i}$	0.042	$0.9657487572-0.2594782650 \mathrm{i}$
100	-101	$0.9657294-0.2595510 \mathrm{i}$	0.052	$0.9657293072-0.2595513547 \mathrm{i}$

so that one can write the regular large Dirac component as

$$
\begin{equation*}
F(r)=A\left|u_{F}(r)\right| \sin \left[\phi(r)+\arg u_{F}(r)+\beta\right] \tag{12}
\end{equation*}
$$

with A and β being constants and $\arg u_{F}(+\infty)=0$ from the boundary condition (10). The constant A is unimportant here, but β has to make sure that the solution vanishes at the origin; see [6] for a general discussion on physically acceptable potentials that allow a unique vanishing solution at $r=0$. The phase $\phi(r)$ in (12) is defined from (8) apart from a constant of integration that can be chosen so that the phase vanishes as $r \rightarrow 0$. The constant β in (12) is then uniquely determined from the requirement that the sine function vanishes. Hence, one has

$$
\begin{equation*}
\phi(0)=0 \quad \text { and } \quad \beta=-\arg u_{F}(0) \tag{13}
\end{equation*}
$$

The phase shift defined in (2) is thus obtained by the formula

$$
\begin{equation*}
\delta_{\ell, \kappa}=\lim _{r \rightarrow+\infty}[\phi(r)-k r-\eta \ln (2 k r)]-\arg u_{F}(0)+\pi \ell / 2 \tag{14}
\end{equation*}
$$

A numerical test that allows comparisons with exact analytic results is provided by the Coulomb potential:

$$
\begin{equation*}
V(r)=-\frac{Z e^{2}}{r} \tag{15}
\end{equation*}
$$

Here, Z is the nuclear charge number and $e>0$ is the Coulomb charge unit.
The amplitude phase computations are performed using MatLab's integration routine 'ode23' with a tolerance of 10^{-7}. Atomic units ($m=e=\hbar=1$) with $c=137$ are used. The scattering energy is chosen as $E=m c^{2}+10^{2}$ au. The integrations are initiated at $r=r_{0}=$ 5×10^{3} and terminated at $r=10^{-10}$. A comparison is made with results from the closed-form Coulomb S-matrix given by (see [4])

$$
\begin{equation*}
S_{\ell, \kappa} \equiv \mathrm{e}^{2 \mathrm{i} \delta_{\kappa, \ell}}=\frac{\kappa-\mathrm{i} \eta m c^{2} / E}{\Lambda-\mathrm{i} \eta} \frac{\Gamma(\Lambda+1-\mathrm{i} \eta)}{\Gamma(\Lambda+1+\mathrm{i} \eta)} \mathrm{e}^{\mathrm{i} \pi(\ell-\Lambda)} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\left[\kappa^{2}-(Z \alpha)^{2}\right]^{1 / 2}>0 \tag{17}
\end{equation*}
$$

Table 1 shows that the amplitude-phase equations can be effectively integrated using 'MatLab ode23' with minor deviations in the numerical accuracy for different values of the system parameters. The values of the local phase $-\arg u_{F}(0)$ appear to be rather sensitive to the initial (approximate) values of $u_{F}\left(r_{0}\right)$, but this sensitivity does not influence the final amplitude-phase result. Therefore, it is not relevant to show more than the first few decimals of $-\arg u_{F}(0)$ in the table.

This paper presents a new amplitude-phase approach for analyzing the radial Dirac equations. A more detailed account of the method and comparisons with the 'standard' amplitude-phase method (see [1]) and other methods will be presented elsewhere.

References

[1] Milne W E 1930 Phys. Rev. 35863
Wilson H A 1930 Phys. Rev. 35948
Young H A 1931 Phys. Rev. 381612
Young H A 1932 Phys. Rev. 39455
Wheeler J A 1937 Phys. Rev. 521123
Korsch H J and Laurent H 1981 J. Phys. B: At. Mol. Phys. 144213
Korsch H J, Laurent H and Möhlenkamp R 1982 J. Phys. B: At. Mol. Phys. 151
Andersson N 1993 J. Phys. A: Math. Gen. 265085
Fröman N and Fröman P O 1996 Phase-Integral Method, Allowing Nearlying Transition Points (Springer Tracts in Natural Philosophy), with adjoined papers by A Dzieciol, N Fröman, P O Fröman, A Hökback, S Linnaeus, B Lundborg and E Walles vol 40 ed C Truesdell (New York: Springer)
Thylwe K-E 2004 J. Phys. A: Math. Gen. 37 L589
[2] Thylwe K-E 2005 J. Phys. A: Math. Gen. 3810007
[3] Thylwe K-E 2005 J. Phys. A: Math. Gen. 387363
[4] Berestetskii V B, Lifshitz E M and Pitaevskii L P 1971 Relativistic Quantum Theory: Part 1 Engl. edn (Oxford: Pergamon)
[5] Messiah A 1970 Quantum Mechanics vol 2 Engl. edn (Amsterdam: North-Holland)
[6] Esposito G and Santorelli P 1999 J. Phys. A: Math. Gen. 325643

